Utilization of Disposable Paper Cups for Production of Cellulose Acetate Based Film
Keywords:
Cellulose, Cellulose Acetate, Disposable Paper CupsAbstract
The aims of research to explore the conversion of disposable paper cups, commonly used in the food and beverage industry, into cellulose acetate film. The increasing environmental concerns regarding plastic waste and the desire for sustainable alternatives have led to the investigation of utilizing cellulose-based materials.
Cellulose, a biopolymer derived from plant-based sources, is the primary component of paper cups. Through a series of chemical processes, cellulose fibers are extracted from the paper cups and subsequently acetylated to form cellulose acetate. Cellulose acetate is a biodegradable and versatile material with various applications in packaging, textiles, and films. The project involves experimental work to extract cellulose fibers from the paper cups, optimizing the acetylation process, and fabricating cellulose acetate films through casting. The cellulose acetate films exhibit favourable properties, including good mechanical strength and thermal stability. These properties make cellulose acetate films a potential alternative to conventional plastic films, offering environmental benefits and promoting sustainability.
The project highlights the importance of utilizing waste materials and transforming them into value-added products. By diverting waste from landfills and reducing dependence on conventional plastics, the project contributes to the promotion of a circular economy and sustainable practices.
References
EI Bhilat, H.; Hachim, A.; Salmi, H.; Mabchour, H.; EI Had, K. Characterization and processability of post-consumer, doublerecycled high impact polystyrene from disposable cups. Mater. Today Proc. 2021, 45, 7264–7270. Available from: http://dx.doi.org/10.1016/j.matpr.2020.12.935
Liu, G.; Wang, J.; Wang, M.; Ying, R.; Li, X.; Hu, Z.; Zhang, Y. Disposable plastic materials release microplastics and harmful substances in hot water. Sci Total Environ. 2021, 151685. [PubMed]. Available from: https://doi.org/10.1016/j.scitotenv.2021.151685
Dintcheva, N.T.; Infurna, G.; D’Anna, F. End-of-life and waste management of disposable beverage cups. Sci. Total Environ. 2021, 763, 143044. Available from: https://doi.org/10.1016/j.scitotenv.2020.143044
Keller, A.; Köhler, J.K.; Eisen, C.; Kleihauer, S.; Hanss, D. Why consumers shift from single-use to reusable drink cups: An empirical application of the stage model of self-regulated behavioural change. Sustain. Prod. Consump. 2021, 27, 1672–1687. Available from: https://doi.org/10.1016/j.spc.2021.04.001
Van der Harst, E.; Potting, J. A critical comparison of ten disposable cup LCAs. Environ. Impact Assess. Rev. 2013, 43, 86–96. Available from: https://doi.org/10.1016/j.eiar.2013.06.006
Foteinis, S. How small daily choices play a huge role in climate change: The disposable paper cup environmental bane. J. Clean. Prod. 2020, 255, 120294. Available from: https://doi.org/10.1016/j.jclepro.2020.120294
Bilek, M.A.; Salem, H.J.; Korehei, R.; Olson, J.A. Recycling Paper-Plastic laminate coffee cups using a Single-Disk Refiner: Energy requirements and recovered fiber quality. Waste Manag. 2021, 136, 104–112. Available from: https://doi.org/10.1016/j.wasman.2021.10.008
Karthika, A.; Seenivasagan, R.; Kasimani, R.; Babalola, O.O.; Vasanthy, M. Cellulolytic bacteria isolation, screening and optimization of enzyme production from vermicompost of paper cup waste. Waste Manag. 2020, 116, 58–65. Available from: https://doi.org/10.1016/j.wasman.2020.06.036
Ranjan, V.P.; Joseph, A.; Goel, S. Microplastics and other harmful substances released from disposable paper cups into hot water. J. Hazard. Mater. 2021, 404, 124118. Available from: https://doi.org/10.1016/j.jhazmat.2020.124118
Ma, Y. Problems and resolutions in dealing with waste disposable paper cups. Sci. Prog. 2018, 101, 1–7. Available from: http://dx.doi.org/10.3184/003685017X15129981721365
Arumugam, K.; Renganathan, S.; Babalola, O.O.; Muthunarayanan, V. Investigation on paper cup waste degradation by bacterial consortium and Eudrillus eugeinea through vermicomposting. Waste Manag. 2018, 74, 185–193. [PubMed]. Available from: https://doi.org/10.1016/j.wasman.2017.11.009
Notaro, S.; Lovera, E.; Paletto, A. Consumers’ preferences for bioplastic products: A discrete choice experiment with a focus on purchase drivers. J. Clean. Prod. 2022, 330, 129870. Available from: https://doi.org/10.1016/j.jclepro.2021.129870
Loschelder, D.D.; Siepelmeyer, H.; Fischer, D.; Rubel, J.A. Dynamic norms drive sustainable consumption: Norm-based nudging helps café customers to avoid disposable to-go-cups. J. Econ. Psychol. 2019, 75, 102146. Available from: https://doi.org/10.1016/j.joep.2019.02.002
Novoradovskaya, E.; Mullan, B.; Hasking, P.; Uren, H.V. My cup of tea: Behaviour change intervention to promote use of reusable hot drink cups. J. Clean. Prod. 2021, 284, 124675. Available from: https://doi.org/10.1016/j.jclepro.2020.124675
Gill, M.B.; Jensen, K.L.; Lambert, D.M.; Upendram, S.; English, B.C.; Labbé, N.; Jackson, S.W.; Menard, R.J. Consumer preferences for eco-friendly attributes in disposable dinnerware. Resour. Conserv. Recycl. 2020, 161, 104965. Available from: https://doi.org/10.1016/j.resconrec.2020.104965
Sandhu, S.; Lodhia, S.; Potts, A.; Crocker, R. Environment friendly takeaway coffee cup use: Individual and institutional enablers and barriers. J. Clean. Prod. 2021, 291, 125271. Available from: https://doi.org/10.1016/j.jclepro.2020.125271
Ramanathan, S.; Sasikumar, M.; Prince Makarios Paul, S.; Obadiah, A.; Angamuthu, A.; Santhoshkumar, P.; Durairaj, A.; Vasanthkumar, S. Low cost electrochemical composite material of paper cup waste carbon (P-carbon) and Fluorescein for supercapacitor application. Mater. Today Proc. 2021, 47, 825–836. Available from: https://doi.org/10.1016/j.matpr.2020.12.561
Nagarajan, K.J.; Balaji, A.N.; Kasi Rajan, S.T.; Ramanujam, N.R. Preparation of bio-eco based cellulose nanomaterials from used disposal paper cups through citric acid hydrolysis. Carbohydr. Polym. 2020, 235, 115997. Available from: https://doi.org/10.1016/j.carbpol.2020.115997
Chen, J.; Li, H.; Fang, C.; Cheng, Y.; Tan, T.; Han, H. Synthesis and structure of carboxymethylcellulose with a high degree of substitution derived from waste disposable paper cups. Carbohydr. Polym. 2020, 237, 116040. Available from: https://doi.org/10.1016/j.carbpol.2020.116040
Biswal, B.; Kumar, S.; Singh, R.K. Production of Hydrocarbon Liquid by Thermal Pyrolysis of Paper Cup Waste. Waste Manag. 2013, 2013, 731858. Available from: http://dx.doi.org/10.1155/2013/731858
Mitchell, J.; Vandeperre, L.; Dvorak, R.; Kosior, E.; Tarverdi, K.; Cheeseman, C. Recycling disposable cups into paper plastic composites. Waste Manag. 2014, 34, 2113–2119. [PubMed]. Available from: https://doi.org/10.1016/j.wasman.2014.05.020
Ikram, R.; Jan, B.M.; Ahmad, W. Advances in synthesis of graphene derivatives using industrial wastes precursors; prospects and challenges. J. Mater. Res. Technol. 2020, 9, 15924–15951. Available from: https://doi.org/10.1016/j.jmrt.2020.11.043
Xia, Q.; Chen, C.; Yao, Y.; Li, J.; He, S.; Zhou, Y.; Li, T.; Pan, X.; Yao, Y.; Hu, L. A strong, biodegradable and recyclable lignocellulosic bioplastic. Nat. Sustain. 2021, 4, 627–635. Available from: https://doi.org/10.1038/s41893-021-00702-w
Jiang, B.; Chen, C.; Liang, Z.; He, S.; Kuang, Y.; Song, J.; Mi, R.; Chen, G.; Jiao, M.; Hu, L. Lignin as a Wood-Inspired Binder Enabled Strong, Water Stable, and Biodegradable Paper for Plastic Replacement. Adv. Funct. Mater. 2019, 30, 1906307. Available from: http://dx.doi.org/10.1002/adfm.201906307
Zhang, J.; Luo, N.; Wan, J.; Xia, G.; Yu, J.; He, J.; Zhang, J. Directly Converting Agricultural Straw into All-Biomass Nanocomposite Films Reinforced with Additional in Situ-Retained Cellulose Nanocrystals. Acs. Sustain. Chem. Eng. 2017, 5, 5127–5133. Available from: http://dx.doi.org/10.1021/acssuschemeng.7b00488
Liu, Y.; Ahmed, S.; Sameen, D.E.; Wang, Y.; Lu, R.; Dai, J.; Li, S.; Qin, W. A review of cellulose and its derivatives in biopolymerbased for food packaging application. Trends Food Sci. Tech. 2021, 112, 532–546. Available from: https://doi.org/10.1016/j.tifs.2021.04.016
Xia, G.; Zhou, Q.; Xu, Z.; Zhang, J.; Zhang, J.; Wang, J.; You, J.; Wang, Y.; Nawaz, H. Transparent cellulose/aramid nanofibers films with improved mechanical and ultraviolet shielding performance from waste cotton textiles by in-situ fabrication. Carbohydr.Polym. 2021, 273, 118569. Available from: https://doi.org/10.1016/j.carbpol.2021.118569
Huang, K.; Wang, Y. Recent applications of regenerated cellulose films and hydrogels in food packaging. Curr. Opin. Food Sci.2022, 43, 7–17. Available from: https://doi.org/10.1016/j.cofs.2021.09.003
Nawaz, H.; Zhang, X.; Chen, S.; You, T.; Xu, F. Recent studies on cellulose-based fluorescent smart materials and their applications: A comprehensive review. Carbohydr. Polym. 2021, 267, 118135. Available from: https://doi.org/10.1016/j.carbpol.2021.118135
Li, Y.; Chen, Y.; Huang, X.; Jiang, S.; Wang, G. Anisotropy-functionalized cellulose-based phase change materials with reinforcedsolar-thermal energy conversion and storage capacity. Chem. Eng. J. 2021, 415, 129086. Available from: https://doi.org/10.1016/j.cej.2021.129086
Shen, Z.; Oh, K.; Kwon, S.; Toivakka, M.; Lee, H.L. Use of cellulose nanofibril (CNF)/silver nanoparticles (AgNPs) composite in alt hydrate phase change material for efficient thermal energy storage. Int. J. Biol. Macromol. 2021, 174, 402–412. [PubMed]. Available from: http://dx.doi.org/10.1016/j.ijbiomac.2021.01.183
Xia, G.; Wan, J.; Zhang, J.; Zhang, X.; Xu, L.; Wu, J.; He, J.; Zhang, J. Cellulose-based films prepared directly from waste newspapers via an ionic liquid. Carbohydr. Polym. 2016, 151, 223–229. [PubMed]. Available from: https://doi.org/10.1016/j.carbpol.2016.05.080
Wong, L.C.; Leh, C.P.; Goh, C.F. Designing cellulose hydrogels from non-woody biomass. Carbohydr. Polym. 2021, 264, 118036. [PubMed]. Available from: https://doi.org/10.1016/j.carbpol.2021.118036
Cavalcanti, D.K.K.; Banea, M.D.; Neto, J.S.S.; Lima, R.A.A. Comparative analysis of the mechanical and thermal properties of polyester and epoxy natural fibre-reinforced hybrid composites. J. Compos. Mater. 2020, 55, 1683–1692. Available from: http://dx.doi.org/10.1177/0021998320976811
A. Singh and M. Mayur, “Development & characterization of PVA/starch nanocomposite film using nanocellulose,” J. Name of Journal, vol. 5, pp. 34–47, 2024. Available from: https://shorturl.at/5PKZJ