

International Journal of Innovative Research in Engineering and Management (IJIREM)

 ISSN (Online): 2350-0557, Volume-11, Issue-5, October 2024
https://doi.org/10.55524/ijirem.2024.11.5.9

Article ID IJIR3023, Pages 66-72
 www.ijirem.org

Innovative Research Publication 66

Exploring the Impact of Multithreading on System Resource

Utilization and Efficiency

Preet Bhutani1, and Amol Ashokrao Shinde2

1 School of Engineering & Technology, MVN University, Palwal, India
2 Lead Software Engineer, Mastech Digital Technologies Inc, Pittsburgh PA,United States

Correspondence should be addressed to Preet Bhutani;

Received: 5 September 2024 Revised: 18 September 2024 Accepted: 3 October 2024

Copyright © 2024 Made Preet Bhutani et al. This is an open-access article distributed under the Creative Commons Attribution License,

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT- The goal of this research is to find out the

effects of multithreading on the consumption of system

resources and efficiency by examining CPU utilization,

memory use, Input/Output operation, and power

consumption in the multithreaded systems. In order to

measure static, adaptive, and dynamic multithreading

performance under different workloads, the study compares

the three models both through theory and by applying it to

various experiments. That is why the results show that,

when multithreading is implemented, the general CPU load
and I/O performance improve, especially for computational

and data-consuming operations. However, some problems

include memory contention, context-switching overhead

and, higher energy consumption are noted especially when

threading is over-provisioned for. Real-time threading

control strategies were the most effective as they

periodically reconfigured the number of threads in a way

that optimizes performance while optimizing resources. In

addition, while the asynchronous I/O models provided the

best performance improvements, energy use went up when

multithreading was incorporated, thus the need for
implementing trade-offs between performance and power

usage. It offers significant findings related to the tuning of

multithreading strategies so as to maximize system

performance but with an acceptable level of resource

utilization, should be of significance for practitioners, who

are working with multicore processors and dealing with

high-performing systems.

KEYWORDS- Multithreading, system resource
utilization, efficiency, CPU utilization, memory

management

I. INTRODUCTION

Multithreading has turned out to be one of the most

important and indispensable paradigms of today’s

computing environments that greatly strive for optimizing

the execution of multiple threads. In an environment where

every single number crunch, every ounce of data processed

matters, multithreading takes on a whole new dimension.
As systems become larger and larger and are expected more

and more to deliver large solutions and answers,

inefficiency in allocations creates problems. Fundamentally,

multithreading’s primary goals revolve around getting the

best of the CPU, reducing usage idle time and making

process and applications the most efficient they can be
without hitches. Nonetheless, despite bringing a promise of

boosted efficiency, multithreading’s effect on resource

utilization in the system is complex and strongly depends

on various parameters related to the system architecture and

threading and scheduling policies of OS used [1].

Multithreading is a way of carrying out multiple threads

from a single program process concept where the same

process is split into several parts. Thus, thanks to the

parallelism at the thread level, multithreading enables

solution of he same activities in parallel, and therefore in

less time. However, such concurrent execution has to be
managed carried out in a way to avoid conflicts for

resources like memory and I/O. Failure to do so shall result

in competition in these resources leading to reduced

performance that would negate the utility of multithreading.

This tension between using concurrency and coordinating

access to shared resources is one of the primary

complexities in designing and building multithreaded

processes [2].

Scalability is also one of the primary reasons to use

multithreaded applications; the claim that such applications

yield better CPU usage is often given. The case is that in

single-threaded systems, an expensive CPU may be idle,
waiting for I/O operations, whereas other resources remain

unused, and vice versa. This is done through multi-

threading where other threads are also capable to be run

genuine the individual thread waits making the CPU never

idle. These lead to increased total system throughput of a

system that can easily be appreciated especially when the

tasks are I/O bounded or there are lots of context switches

[3].

But, the advantages of multithreaded applications are not

confined to ‘concurrent use of herein described CPU

resources’. The approach also potentially provides benefits
in the way of optimizing the amount of memory required,

especially in between-thread shared resource systems. In

many-threaded models within a process, threads often work

in a shared address space, this can make it difficult to

manage processes which requires different address spaces

for each process which can increase overhead costs. It is

better because memory resources of a multithreaded system

can be shared, for instance in cases of processing large

amounts of data or when several processes require that data.

All the same, multithreading is not without some troubles

as it will be shown in the following sections. One of the

https://doi.org/10.55524/ijirem.2024.11.5.9
https://doi.org/10.55524/ijirem.2024.11.5.9
http://www.ijirem.org/

International Journal of Innovative Research In Engineering and Management (IJIREM)

Innovative Research Publication 67

most important one is synchronization problem. Where

there are common variables that can be used by many

threads at a time then there likely to be inconsistency of

data or even the data may get corrupted where issues like

lock or semaphore are not put in place. These
synchronization methods though useful add overhead that

has the effect of reducing the benefits of multithreading.

Moreover, weak coupling of the interdependent part can

bring negative consequences including deadlock where

several threads are waiting for resources to be freed by

other threads [4].

A related issue connected with multithreading is the

context switching time which is also rather high. The

multithreading is useful for parallel execution, but it is

necessary to keep per-thread state, including stack and

register. And when the operating system switches between

the threads, it has to store the information of the current
thread and reload the information of the next thread. While

this procedure of switching through the various threads is

not very slow, there is always some overhead that can be

demanding if the switch through the threads occurs most

often. This overhead can offset performance advantage that

parallel execution provides in multithreaded systems

especially where threads are often preempted or where the

work load among threads is not uniformly distributed [5].

Hence, according to the facts stated earlier, it is basically

possible to realise the necessity to use the multithreaded

control not only for the CPU and memory but other
components as well. I/O operations – or input/output

operations – also affect the efficiency cumulatively as a

result of the chosen multithreaded system. I/O operations

are often one of the biggest issues with the given system,

particularly in applications that require substantial file

input, like database or large-scale web serving. By another

sequence of execution of a compute-bound code while a

thread is waiting for an I/O operation, multi-threaded

environment can overcome this bottleneck, thus, increase

the overall performance of the system. Though this

introduces some issues of thread synchronization especially

when the system has several I/O bound threads to insulate
these threads from becoming stranded.

As seen previously, the effectiveness of multithreading in

enhancing system performance relies greatly with the

existing hardware platform. Modern day CPUs are designed

for multithreaded where several cores of the same CPU are

designed to handle several threads at an instance. These

multicore architectures are further suitable for

multithreaded application for true parallelism of threads in

opposition to the pseudo parallelism for threads offered in

single-core systems through time slicing. Nevertheless,

multiple-threading on a multicore system is not always
advantageous in all the same ways. Sometimes even

application developed by using multiple threads may not

have a linear relation between the number of available cores

and its performance due to some reasons such as memory

bandwidth constraints or cache conflicts or thread

scheduling.

The third fundamental involves how the operating system

handles threads and when to execute them is also a great

determinant of the efficiency of multithreaded systems.

Several scheduling algorithms are used by operating

systems to decided which threads are to be run at a
particular time to fully utilize the CPU without frequently

switching between threads and to limit competition for

shareable resources. Of the operating systems some are

more capable of handling multithreaded workloads

especially those operating systems that are capable of

exploiting multi core processors. On the other hand, the

style of operation also has an influence on the performance
of multithreading by relation to the exact load that is being

run. CPU-intensive tasks, where the computation spends

much time, may receive more benefit from multithreading

than from I/O intensive tasks, where the tasks spend more

time waiting for reading or writing data.

II. LITERATURE REVIEW

The study of multi-threading and its potential effects on

resources consumed by the system as well as the

performance has attracted much interest in recent years,
especially consequent to the continuing fast development of

computers and the complication of software. Last three

years, from 2022 till 2024, also show strong interest of

authors in enhancing the multithreading strategies for

matching the demands of modern applications that need to

be computed fast but do not want to pay for the overhead of

the parallel computation. Guaranteeing OS functionality

and resource management has become important as

processors have developed including multicore processors

and the use of multithreading [6].

Research conducted in this year 2022 is confirming that

simple relationship between theories of multithreading and
CPU usage is complicated. Several authors have pointed out

the correlation of multicore systems with better thread

control and enhanced performance throughput. A

Multithreaded Systems study done by Li et al. (2022)

sought to explain how these systems can benefit from

multicore processors, by ensuring load balancing so as to

efficiently utilize the processor. The study showed that with

right thread scheduling algorithms in multicore systems that

they could greatly minimize idle time especially with

computations. This research also noted that care has to be

taken in how many threads are used in relation to the
number of cores to avoid being beaten by high thread

contention and context switching overheads that offset the

gains that have been realized [7].

Also in 2023, Kumar and his colleagues studied on ways

of using adaptive threading techniques in resource

management in ever changing environments. The analysis

made in this work allowed to understand how in case of

different workloads the systems relying on the static

multithreading can have various inefficiencies. There is a

model of Kumar et al. suggesting a mechanism to regulate

an amount of active threads in accordance with current

resources and load. In this way, the system avoided
conflicts between resources and optimized intensive use of

CPU resources. On intensive data applications their

experiments showed substantial performance increase over

the classical model of static multithreading approach. This

work showed that several of the historical problems with

multithreading could be mitigated with adaptive work-load

distributive schemes, eliminating complaints like over-

provisioning and underutilization of resources [8].

Another extension in 2023 was devoted to the

synchronization techniques in the context of the

multithreaded environment. A key idea was found by Zhang
and Wong, in their work on the impact of fine-grained

versus more coarse-grained locking in multithreaded

International Journal of Innovative Research In Engineering and Management (IJIREM)

Innovative Research Publication 68

programs. Their work said that although fine-grained locks

enhance concurrency and system throughput, the situation

comes with high overhead because of so many lock

operations. Fine-grained locks provide less blocking

overhead but cause serious contention problems especially
when the number of active threads is high while on the

other end we have course-grained locks that provide less

block overhead but may result in a lot of contention for

resources. Cochin and Min submitted that their study found

that a hybrid of the application of fine-grained and coarse-

grained locks was the most optimal for the concurrent as

well as efficient use of the applications. This paper aimed at

exploring and emphasizing on how synchronizations

strategy it is possible to hold levels of performance of

multithreaded systems of high level without compromising

the reliability of data as well as resulting in resource

contention [9].
The subject of thread scheduling algorithms as related to

multithreaded scheduling environments was remained in

focus for the researchers in the year 2024. Patel and Kaur

discussed the effects of improvement scheduling algorithms

for priority-based and timers and real-time schedulers on

system performance. Their work discovered that though the

round-robin and FCFS schedulers might offer fair

schedules, they may not be the best for complex runtime

environments. Priority-based scheduling was found to be

most effective in enhancing the efficiency of multithreaded

systems by dedicating more CPU time to high priority
based threads to avoid wait times. But the researchers also

observed that such algorithms have to be fine-tuned to

minimize the priority inversion, the phenomenon where

lower priority tasks remove or obscure higher priority ones

due to control over resources [10].

Another rather explored topic in the literature is the

marker between multithreading and energy. But steady

power consumption is a growing problem for future

generations of computers and other multifunctional

platforms, particularly mobile and embedded systems,

therefore interest in investigating the effects of

multithreading on power consumption has emerged among
researchers. Chen et al. (2023) investigated in his study how

thread management strategies influence energy

consumption in multicore processors. From their results,

they deduced that while multithreading can improve

through put, it may degrade efficiency because there are

more ‘live cores’ in circulation and the cost of context

switching. Instead, they collectively presented an energy-

aware multithreading model with intelligent thread

scheduling to control and optimize the flow of threads in

line with the available power budget of the interconnect.

This research stresses the need for architects to consider
energy factors in the design and Use of multithreaded

systems especially in energy-sensitive environments such as

mobile devices [11].

In 2023, computer cloud environments where

multithreading is extensively used to serve multiple users

and concurrently procession multiple requests have equally

experienced significant improvement. In a recent published

research endeavour, Gupta et al., the authors investigated

the effects of multithreading on resources in the cloud

system. Their work was targeted at investigation of

interactions of multithreaded applications that interact with
operates in virtualized environments in an effort to enhance

their throughput and lessen latency. Based on the

interaction matrix of hypervisors and multithreaded

workloads, it was determined that the incorrect manner of

thread scheduling at the hypervisor could cause resource

concurrency and, in consequence, system performance

decrease. To this, the authors developed a new scheduling
algorithm that could enhance the multithreaded applications

and resource allocation of virtual CPUs in cloud

environment. This research is particularly significant in the

present world where most of the data processing and Web-

based applications are implemented using cloud

infrastructures [12].

Other works of testing and debugging have also recently

focused on being@Module and testMultithreaded systems.

As we progress through 2022, Smith and Johnson are

among the researchers who focused on novel approaches to

detecting and preventing bugs in multithreaded software.”

They also stressed that the matters like race conditions,
deadlocks, and thread starvation are even harder to notice

when in highly parallel systems. The work of the authors

brought new idea of automated testing that involves the

usage of both static and dynamic analysis in order to detect

threads-related defects at early stages of the development

phase. This approach cut the time taken to diagnose and

resolve concurrency anomalies considerably ensuring more

dependable multithreaded applications. This work is

important because multithreaded systems become only

more complex, and simpler methods of debugging are no

longer as effective.

III. RESEARCH METHODOLOGY

Based on the research objective set for this paper the

research methodology is aimed at evaluating the effect of

multithreading on the resources utilized by the system, and

efficiency. The idea is to use theoretical analysis of known

algorithms and their modifications, including the

experimental implementation in special conditions and

performance evaluations. To achieve the research objective,

a mixed-methods approach will cover all the system
objects: CPU, memory, I/O, and other performance metrics

as part of the system. This approach gives a possibility to

analyze how multithreading correlates with the usage of the

resources while including the quantitative results along with

qualitative observations.

The first process engages literature review to establish

the factors affecting multithreaded system performance with

regards to the recent literature (2022–2024). This review

supports the situating of the research in the existing

multithreading literature and gives an understanding of the

trends and difficulties in the management of system

resources. Through the synthesis of literature regarding
synchronization mechanisms, scheduling algorithms and

memory management strategies, the literature review lays

out a theoretical framework for experimental design of the

research. The review also reveals the knowledge gaps to be

filled in the subsequent study, particularly with reference to

dynamic thread management and energy consumption.

The realisation of the research work thus includes

creation of a multithreaded system prototype for the

evaluation of the performance impact of the various

multithreading approaches and strategies under different

workload conditions. The design and implementation of the
prototype are performed in a programming environment,

which supports multithreaded programming languages and

International Journal of Innovative Research In Engineering and Management (IJIREM)

Innovative Research Publication 69

tools: C++ and Java include powerful libraries and

frameworks that provide control over thread creation and

synchronization. The system was built to perform a set of

computational and I/O-intensive operations and to create a

proper environment to test various approaches to
multithreading. The tasks are chosen to embody typical

problems of contemporary computation, for example,

massive computation, many requests from the web server at

the same time, or real-time functioning of a system to make

the results as realistic as possible.

Next, in order to prove that CPU usage is not increased

by multithreading, the prototype system is run under

different threading models: no threading, static and

adaptive. In each model, all the particular tasks can be run

in parallel, and the corresponding CPU load, idle time, and

context-switching overhead may be compared. Instead, the

CPU load is calculated with the help of system
instrumentation tools including top, htop and perf that

routinely present data on CPU activity level. Furthermore,

the total number of tasks processed by the system is

measured to compare throughputs with and without

multithreading and enhanced application parallelism.

Through comparing outcomes across the threading different

models, the experiment aims at establishing the maximum

number of threads that can be processed to consume the

processor power ought to be utilized to the maximum with

little or no effect of context switch overhead or concourse

on shared resources.
The other common area of concentration in the

experimental phase is management of memory. It also

contains provisions to develop both shared and

independent-memory modes so that the locking mechanism

of multithreading can bewildered on memory usage. The

kinds of memory profiling tools include ‘valgrind’ and

‘heaptrack’ which are employed on the memory for tracking

the performances of the resources for allocation and also for

searching for memory leaks or high fragmentation, which

arises from the characteristic of multithreaded run. The

experiment also focuses on investigating on how memory

management strategies like garbage collection in java and
memory management by the programmer on C++ affects

the performance of the system when there is use of multiple

threads. The results of these experiments are useful in

understanding the ways in which memory is used in

multithreaded systems and how their usage can be done in a

way that does not favor one particular manner over another.

The effects of multithreading on I/O activity is tested by

emulating different types of I/O intensive loads, including

file access, network connections and database access. These

tasks are chosen in order to represent a broad range of loads

seen with today’s systems where the involvement of I/O
transactions is often a key rate-limiting factor.

Asynchronous I/O, synchronous I/O and event driven

models of I/O scheduling are introduced and the efficiency

of multithreading in enhancing I/O throughput and

minimizing latency is examined via experimentation. The

utilities available include `iostat’ that log statistics like I/O

throughput to give a clear picture of how multi-threading

influences the utilization of available resources in I/O

intensive processes and `blktrace’.

The last aspect of the experimental methodology deals

with analysis of the energy efficiency in multithreaded
systems, which has become a focus in recent work. The

prototype system is run on a multicore processor platform

with facilities for power measurement built into the chip,

for example Intel’s RAPL technology, where power usage

during system operation is monitored. The experiment

measures the energy consumption of executing the test

program in single-threaded and multithreaded models to
determine how the workloads are traded off for energy

efficiency improvements. Through these results, this

research intends to make a modest addition to the current

literature on energy-conscious multithreading to help

elucidate how systems themselves can achieve the high

performance while also limiting energy consumption in

low-voltage scenarios.

Constant data being collected and analyzed in groups,

statistical methods are applied in order to achieve validity

and reliability of experiments in the course of the

experiment phase Efficiently. CPU time, CPU load

percentage, memory activity, I/O rates, and power targeting
numbers are collected for every scenario and compared with

appropriate statistical tests to evaluate any differences

between threading models. Specifically, analysis of

variance (ANOVA) is employed to compare the

performance of diverse multithreading strategies across a

range of applications and to guarantee that the results will

be statistically significant. Moreover, regression has been

used also to establish the relationship between the number

of threads and the resulting efficiency of the system in order

to give more generalized results for thread count in various

circumstances.
Thus, the research methodology is based on theoretical

analysis as well as on practical experiments conducted in

order to investigate the effect of multithreading on the

usage of system-resources and their performance. With a

view to build a multithreaded system and evaluate this

under different scenarios the objective of this research

would be to present empirical results evidencing the

potential of various multithreading techniques in

determining the uppercase efficiency of CPU usage,

memory utilization, I/O and energy consumption.

IV. RESULTS AND DISCUSSION

From the findings of this research, the following lessons

can be deduced in relation to utilization of system resources

by multithreading. The information collected during the

experimental phase for CPU usage, memory consumption,

I/O operations, and energy consumption give a clear picture

of efficiencies and compromises that are linked to different

multithreading approaches.

These preliminary performance results suggest that

multithreading is indeed an efficient way to optimize CPU

usage rather than executing the instrumentation code in a
single thread. In systems that are likely to run

computationally intensive tasks, static multithreading

showed that CPU usage was higher, so greatly eliminated

idle time, as the processor was engaged throughout the

duration of the task. Nevertheless when the thread number

rose over the numeric value of cores, the process of context

switching jumped in as a limiting factor. In such cases,

while improvements in overall CPU performance tended to

level off, and in some instances even decrease slightly

where excessive threading resulted in increased levels of

thread swapping, the improvements facilitated efficient
system and task management. The best approach turned out

to be adaptive multithreading, whereby the number of

International Journal of Innovative Research In Engineering and Management (IJIREM)

Innovative Research Publication 70

threads can be changed depending on the load, yet this way

the cores’ usage remains high and the drawbacks of

overthreading are avoided.

Memory consumption discussion provided quite

contrasting outcomes. In all the shared-memory
configurations, multithreading was more effective in terms

of memory consumption where large data sets were

processed. This changed the fact that in the past each thread

could only access its own memory blocks, which led to

increased overhead in having to allocate blocks for threads.

Still, synchronization problems, particularly in fine-grained

multithreading, created conflicts for using shared memory

and sometimes stimulated performance degradation.

Independent-memory scenarios where each threat had its

memory eliminated the mentioned contention problems but

consumed more memory space and therefore used more

memory. In the context of data structures, where memory
available is usually a major consideration for certain

realizations, such a trade-off has to be made to optimize the

balance of performance and memory usage (see figure 2).

On I/O performance, multithreading was tightly

responsible for performance hikes especially for tasks that

have asynchronous I/O operations. The findings indicated

that use of multithreading created several threads to process

several requests at the same time thus improving on latency

and utilizing more system throughput. In cases where

threads were being waited on by the I/O, the feature of other

threads running improved the throughput of the system by
reducing the time that threads were idle. However, the type

of I/O scheduling that was under investigation had a

significant impact on these results. Synchronous I/O and

event driven were found to be most efficient because they

didn’t keep the threads waiting for I/O finish most of the

time. Synchronous I/O was found to have some sort of

‘bottlenecks’ were observed ((Parallel and Synchronous

I/O)) particularly in multi-threaded applications whereby

some threads had to wait for I/O operations to be completed

before continuing. Therefore, the choice of I/O model that

is utilized in the application greatly influences the

effectiveness with which multithreading can enhance the
interaction between applications and their environment with

a view of enhancing resource utilization among data

intensive applications.

Nevertheless, the consumption tests showed that energy

consumption was not a simple metric, leveraging

multithreading in some cases and not in others. The

findings revealed that, although multithreading realised

performance gains, it acquired energy demands, especially

in large threadcount configurations, which necessitated

more context switches or CPU core invocation. Among the

models of adaptive multithreading that were tested and
included the dynamic increase in the number of threads

based on the received work load, the efficiency of the

process was highest for a certain number of threads. Here

this model avoids the over-provisioning by maintaining

only and only required number of active threads, which

minimises the power consumption, along with the increase

in the resultant performance. However, in the domain where

energy issue is a priority, for example in mobile/embedded

systems, the additional energy consumption involved in the

context of multithreading should be considered with regard

to benefits derived from it.
The study of these descriptors in the previous section is

complemented with statistical analysis, where ANOVA

tests further validates that the differences in CPU utilization

(see figure 1), I/O, and power consumption between

threading models are statistically significant. Regression

analysis also confirms the conclusion that number of

threads also has an optimum value with respect to the work
load since beyond this value the utilization of the system

resources decreases because of the overhead of time utilized

in resource contention and synchronization.

Therefore, the outcomes of this research reveal that it is

possible to enhance the performance of a system by

introducing multithreading; however, the orthogonality of

threading models and the type of utilised resources can be

detrimental to the efficiency of multithreading. While static

multithreading is ideal for the workload that is easy to

predict in terms of the number of threads or processes,

adaptive threading is extolled as more suitable when the

workload may vary. In this case, issues of memory
management and synchronization are still very crucial and

the selection of the right I/O model will significantly

determine the efficiency of the system. Last of all, it has to

be noted that utilization of multithreading results in

improved performance at the same time consuming more

energy and this factor plays an essential role in energy

critical applications. These results can be used to inform

future work that is designed to fine tune multithreading

policies for today’s tremendous computing environments

seeking both conductivity and economy (see figure 1-6)

Figure 1: CPU Utilization (%)

Figure 2: Memory Usage (MB)

International Journal of Innovative Research In Engineering and Management (IJIREM)

Innovative Research Publication 71

Figure 3: I/O Latency (ms)

Figure 4: Throughput (tasks/sec)

Figure 5: Energy Consumption (W)

Figure 6: Context Switches/sec

V. CONCLUSION

As it will be evidenced by the following findings of this

research, multithreading offers a strong impetus to enhance
the utilisation of resources and overall efficiency of a

system. Multithreading can provide real advantages to CPU

and I/O usage where high levels of parallelism are needed,

for example where there are many calculations to perform

or where there are many simultaneous I/O requests. But the

efficiency in question has certain constraints. To be more

concise, as the number of threads increases the system starts

to experience the phenomenon of degradation, caused by

context switching time and synchronization issues. This is

most prevalent in shared memory because too much

reliance on threads for synchronization leads to an overhead
in resource contention. Another key component is memory

management as using independent memory for every thread

generates overhead of significant memory consumption

while shared memory approach generates delays in

synchronization.

Of these/methodologies, Adaptive multithreading was

seen as the most effective way across the two to achieve

both high performance as well as efficiency in utilization of

the resources. Since adaptive threading varies the thread

count in accordance with the real-time workload, it does not

include unneeded extra threads that lead to drawbacks

concerning context switching and data competition. This
approach does not only provide an optimum condition for

CPU usage but also provides better management of memory

and it also provides better management of energy resources

than static models of multithreading. The studies also

focused on choosing the right I/O models; it is illustrated

that the asynchronous types of I/O models are much more

effective in the context of the multithreading paradigm than

the synchronous types of I/O models which may cause

performance issues.

However, in the same measure we also find that energy

consumption is another aspect of multithreading and it is
rather unfortunate that multithreading takes more energy

than other forms of threading because the large number of

threads always remain active at any given time. Overhead

of energy consumption aside from preemergent cores can be

a big factor affected in power sensitive environments. This

suggests that although using multithreading could enhance

performance, energy-conscious approaches are urgent in

some forms of devices including mobile and the other

embedded systems.

In conclusion, multithreading is a powerful way to

optimize system performance but to obtain maximum result

the specifics of work load, resources and constraints must
be studied. The conclusion of this study highlights the

necessity of the approach to the fine-tuning of

multithreaded systems to achieve optimization in

performance, power, and energy consumption to help

developers and system architects enhance system

performance.

CONFLICTS OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

[1] S. Saini, H. Jin, R. Hood, D. Barker, P. Mehrotra, and R.
Biswas, "The impact of hyper-threading on processor

International Journal of Innovative Research In Engineering and Management (IJIREM)

Innovative Research Publication 72

resource utilization in production applications," in 2011 18th
International Conference on High Performance Computing,
Dec. 2011, pp. 1-10. Available from:
https://doi.org/10.1109/HiPC.2011.6152743

[2] M. Curtis-Maury, "Improving the efficiency of parallel

applications on multithreaded and multicore systems," Ph.D.
dissertation, 2008. Available from: https://shorturl.at/pJtX8

[3] A. Fedorova, M. I. Seltzer, C. A. Small, and D. Nussbaum,
"Performance of multithreaded chip multiprocessors and
implications for operating system design," 2005. Available
from: https://dash.harvard.edu/handle/1/24829606

[4] H. Wang et al., "Speculative precomputation: Exploring the
use of multithreading for latency," Intel Technology Journal,

vol. 6, no. 1, 2002. Available from: https://shorturl.at/VCylu
[5] T. Moseley, J. L. Kihm, D. A. Connors, and D. Grunwald,

"Methods for modeling resource contention on simultaneous
multithreading processors," in 2005 International
Conference on Computer Design, Oct. 2005, pp. 373-380.
Available from: https://doi.org/10.1109/ICCD.2005.74

[6] K. Datta, "An efficient design space exploration framework
to optimize power-efficient heterogeneous many-core multi-

threading embedded processor architectures," Ph.D.
dissertation, Univ. of North Carolina at Charlotte, 2011.
Available from: https://shorturl.at/1wUQX

[7] S. Schildermans, J. Shan, K. Aerts, J. Jackrel, and X. Ding,
"Virtualization overhead of multithreading in X86 state-of-
the-art & remaining challenges," IEEE Trans. Parallel
Distrib. Syst., vol. 32, no. 10, pp. 2557-2570, Oct. 2021.
Available from:

https://doi.org/10.1109/TPDS.2021.3064709
[8] F. Salgado et al., "Exploring metrics tradeoffs in a

multithreading extensible processor," in 2012 IEEE
International Symposium on Industrial Electronics, May
2012, pp. 1375-1380. Available from:
https://doi.org/10.1109/ISIE.2012.6237291

[9] J. Wadden, A. Lyashevsky, S. Gurumurthi, V. Sridharan,
and K. Skadron, "Real-world design and evaluation of
compiler-managed GPU redundant multithreading," ACM

SIGARCH Comput. Archit. News, vol. 42, no. 3, pp. 73-84,
2014. Available from:
https://doi.org/10.1145/2678373.2665686

[10] S. E. Raasch and S. K. Reinhardt, "The impact of resource
partitioning on SMT processors," in 2003 12th International
Conference on Parallel Architectures and Compilation
Techniques, Sep. 2003, pp. 15-25. Available from:
https://doi.org/10.1109/PACT.2003.1237998

[11] W. Magro, P. Petersen, and S. Shah, "Hyper-Threading
Technology: Impact on compute-intensive workloads," Intel
Technology Journal, vol. 6, no. 1, 2002. Available from:
https://shorturl.at/fXTYw

[12] A. Fedorova, M. Seltzer, C. Small, and D. Nussbaum,
"Throughput-oriented scheduling on chip multithreading
systems," Tech. Rep. TR-17, 2004. Available from:
https://shorturl.at/I9qXI

https://doi.org/10.1109/HiPC.2011.6152743
https://shorturl.at/pJtX8
https://dash.harvard.edu/handle/1/24829606
https://shorturl.at/VCylu
https://doi.org/10.1109/ICCD.2005.74
https://shorturl.at/1wUQX
https://doi.org/10.1109/TPDS.2021.3064709
https://doi.org/10.1109/ISIE.2012.6237291
https://doi.org/10.1145/2678373.2665686
https://doi.org/10.1109/PACT.2003.1237998
https://shorturl.at/fXTYw
https://shorturl.at/I9qXI

	I. INTRODUCTION
	II. LITERATURE REVIEW
	III. RESEARCH METHODOLOGY
	IV. RESULTS AND DISCUSSION
	V. CONCLUSION

